ISO 13485 Certified | ISO9001 Certified Request more information or an in-office demo (267) 483-8081

Category Archives: Clinical Evidence

Study Calls CBCT “Method of Choice” for Hand and Wrist Bone Assessment

Female patient at orthopedic medical exam in doctor's hospital office, traumatology and medical consultation for hand wrist injury

A study published in the International Journal of Biomedicine concludes Cone Beam CT (CBCT)  imaging is the “method of choice” for compound anatomical structures, such as the wrist, and post-traumatic changes in bone tissue.

“Considering the low dose radiation and high image quality,” CBCT could be used as a priority method of choice to assess the structure of wrist and hand bones and be done as a first step in diagnostics, replacing standard radiography,” according to the study, which was led by A. Yu Vasiliev PhD, MD, at Moscow State University of Medicine and Dentistry.

The wrist and hand are one of the regions in the human body most prone to injury and disease.  Only one-fifth of incapacitation is the direct result of injury or disease. Many cases of incapacitation are instead due to mistakes made in diagnosis and treatment, according the study. Vasiliev and his team examined the capabilities of cone-beam computed tomography (CBCT) in the assessment of the structure of wrist and hand bones.

The study appeared in a 2013 issue of the International Journal of Biomedicine.

Vasiliev obtained a Cone-beam CT scan of the wrist and hand of a group of voluntary patients, which included 40 members aged 22 – 68 years. A Magnetic resonance imaging (МRI) exam was also performed on 80 percent of the volunteers, multi-slice CT scan was performed on 40 percent of the volunteers, and digital microfocus radiography and standard radiography exams were performed on 63 percent of the volunteers.

When all 40 CBCT scans were examined, structural changes of wrist and hand bones were detected in 77.5 percent of cases, and consolidated fractures and false joints of bones were detected in 10 percent of cases. All the changes were also detected by the multi-slice CT images and digital microfocus X-Rays, but were not defined on standard X-Rays.

The results demonstrated that CBCT provides high efficiency in detection of form, measurements and structural changes of bones of the anatomic region. The cone beam CT images of wrists and hands provided high-resolution, detailed mapping of bone structure, as well as accurate differentiation of bone trabeculae and minor structural changes and defects.

A new generation of cone-beam scanners makes it possible to obtain high-quality images without exposing the patient to a high dose of radiation. This facilitates more and better examinations in orthopedics and traumatology for better patient outcomes.

CurveBeam designs and manufactures Cone Beam CT imaging equipment for the orthopedic and podiatric specialties. To access the full study, please click here.

New Algorithm Uses CT Data to Create 3D Map and Better Assess Osteoarthritis

knee arthritis stock

Engineers, radiologists and physicians based in the UK have developed a new technique for improving clinical imaging. It uses an algorithm to create a detailed three-dimensional map of a patient’s joint using computed tomography (CT) data. The team, led by co-author Tom Turmezei, Ph.D. of Cambridge University, recently reported on their breakthrough with a journal article titled “A new quantitative 3D approach to imaging of structural joint disease,” which appeared in the June 2018 edition of Scientific Reports.

The team knew that the ability to assess OA with 2D radiographs was not good enough to detect subtle changes that could have important implications for patients, doctors, and researchers. To meet this challenge, they worked to develop a new algorithm for the structural assessment of joints including hips, knees and ankles in 3D. Their recent technical validation study showed the technique was successful.

The algorithm maps joint space width to the nearest tenth of a millimeter. Mapping joint space width in 3D from clinical CT data has the potential to enhance understanding of osteoarthritis and how patients progress to joint failure—leading to better and earlier interventions.

Early Detection Gives Osteoarthritis Patients More Options

The 3D mapping technique has the potential to be more than twice as sensitive as radiographs in detecting small changes in joint space widths. Using the algorithm, clinicians will be able to use CT scans to map a marker of osteoarthritis across a joint. Why does it matter? Because early detection leads to earlier treatment. Doctors could identify patients with disease earlier than the current gold standard, allowing important interventions to be started before the joint fails. Patients will have the opportunity to try lifestyle changes and physiotherapy instead of immediately facing surgery.

All clinical CT imaging was performed on a 64-slice Siemens Definition AS system.

“It will be an important next step to use JSM to investigate whether differences in positioning and load-bearing have any effect on joint space width in 3D,” the authors wrote. “A straightforward solution for prospective studies would be to perform knee and ankle CT in a standing position (as used in clinical practice), and to standardise supine hip positioning by strapping feet together.”

Evaluating New Therapies

In addition, the new 3D method will likely allow researchers to determine whether new therapies in development are effective in a realistic timescale for clinical trials. This is something that has not been possible using radiographs.

CurveBeam designs and manufactures Cone Beam CT imaging equipment for the orthopedic and podiatric specialties. Bilateral, weight bearing scans of the foot and ankle give physicians the information necessary to assess the biomechanical spatial relationships and alignment of the lower extremities.

To learn about a recent grant awarded to the University of Kansas to study joint space biomarkers via weight bearing CT, click here.

The University of Kansas Announces Grant Funding for Knee Imaging Biomarkers Acquired from Weight Bearing CT

Patient with knee pain

The University of Kansas Medical Center Research Institute Department of Rehabilitation Medicine has received a grant from the National Institute of Arthritis Musculoskeletal and Skin Diseases (NIAMS), one of the 27 Institutes and Centers at the National Institutes of Health (NIH), to fund three years of research on the usefulness of bilateral weight bearing CT imaging and the critical need for more sensitive and affordable imaging biomarkers.

Osteoarthritis (OA) is the most prevalent form of arthritis, and the knee is the most commonly affected weight-bearing joint. The high cost of clinical trials creates a barrier for effective treatment development. Therefore, introduction of more specific and sensitive biomarkers could help to advance therapeutic development by reducing the time and sample sizes required for clinical trials.

Proposed Outcomes

There is an urgent need for imaging biomarkers that allow for identification of the best time in which patients will respond to treatment, and a means to analyze the efficiency of interventions. Early studies demonstrated the diagnostic value of bilateral weight-bearing CT in identifying knee OA symptoms accurately, as well as the feasibility to detect meniscal tears not detected by non-weight bearing MRI.

The grant from NIAMS will fund a study to validate the proposed imaging biomarkers and begin the qualification process for more responsive OA imaging biomarkers acquired using low-dose, bilateral standing CT imaging. Substantial advantages are offered over traditional radiographic biomarkers, including increased responsiveness to temporal changes in the joints, and a better reflection of the symptoms and severity of the disease. Additionally, this research will determine the prognostic validity of standing CT findings for detecting progression and worsening pain in people who currently suffer from or are at risk for knee OA.

Long-Term Impact

With the support of NIAMS, this research holds promise to detect joint damage earlier, and accelerate the pace of scientific discovery and clinical trials. The continuing impact will be evident through a shift in knee joint imaging with an improved biomarkers for monitoring knee OA disease features. If the additional meniscal extrusions detected on bilateral standing CT are clinically relevant, then standing CT could improve identification of the most appropriate patients for clinical trials – those at risk of rapid OA progression. Successful completion will provide improved biomarkers that will help those who suffer from knee OA through making clinical trials more affordable and accelerating therapeutic improvement.

For more information on visualizing cartilage and menisci in the knee using standing CT arthrogram versus MRI, click here.

Discussion Looks to Provide Blueprint for Foot and Ankle Deformity Correction

Foot and Ankle Specialist (FAS), a bi-monthly journal for orthopedic surgeons and podiatrists, recently published a roundtable discussion focused on providing insight into the difficult process of deformity correction. For surgeons dealing with the lower extremities, even the central principles of understanding and treating deformities can be extremely complex. Noman Siddiqui, Guido Laporta and John Herzenberg, all of whom carry numerous distinctions in the field of podiatry, all weighed in on the discussion.

Deformity management in cases involving the lower limb can involve high levels of pain. Because of this, while analysis is fairly similar to deformity analysis in other regions of the body, treatment is as much an art as a science. Much of the discussion involves presentation of cases and remarks by the specialists as to how they would care for the patient.

The roundtable ranges from topics on improving education in the field to proper care of patients who are treated with external fixation. Of particular interest is the repeated insistence by the panel that the most essential way to improve the field is to increase the amount of information available to a surgeon before an operation occurs. They remark that, even though patients receive a thorough physical as well as a biomechanical exam, gait analysis, and functional testing, more extensive testing and imaging is needed.

All three of the medical experts point out the need for a computed tomography (CT) scan for the more difficult cases. These scans help to erase any gray areas in the diagnosis and help to evaluate the “mal-union” or “non-union” present in malformed feet and ankles. Dr. Herzenberg even recommended 3D CT technology in order to get a complete picture of the situation, and both a weight and non-weight bearing evaluation.

“[Foot] deformity is complex and may require second-level radiographic studies such as a CT scan,” remarked Herzenberg. “Recently, we have added a standing 3D CT machine in our office, which offers the same advantage from a CT standpoint that we get from plain films taken weight bearing versus non–weight bearing.”

These orthopedic specialists are not alone in their desire for more comprehensive scanning technology when treating deformities. More and more clinics are taking similar steps to those used by Herzenberg’s clinic, The Pediatric Orthopedics Department at Sinai Hospital in Baltimore, which now uses the CurveBeam pedCAT. It is quick, efficient and thorough, and was designed with patients in mind, limiting their discomfort. This is especially important since, as mentioned earlier in the roundtable, pain can be significant when dealing with foot and ankle deformities.

The discussion presents a comprehensive look at the current practices in a complex corner of healthcare, and presents insights into the best way to manage orthopedic deformities in the lower extremities. The specialists involved even go so far as to give advice for those preparing to deal with these cases, and examine current technology that allows them to do so to the best of their ability. To read the roundtable discussion in its entirety, click here.

 

Weightbearing CT Revolutionizing Hindfoot Alignment Measurements

A new study, led by famous Belgian M.D. A. Burssens, emerged in the February issue of Foot and Ankle Surgery. The study examines the use of traditional hindfoot angle measurements versus weight bearing CT and shows how weight bearing CT can help contribute to the pre-operative planning by providing further insights into a physiological hindfoot alignment.

Hindfoot malalignment is a widely-accepted cause of foot and ankle disability and problems. For preoperative planning and clinical follow-up, reliable radiographic assessment of hindfoot alignment is of utmost importance and can affect future health. The long axial radiographic view and the hindfoot alignment view are commonly used for this purpose. The main goal of this study is to obtain measurements from a population with clinical and radiological absence of hindfoot pathology. These values were then compared to hindfoot measurements obtained from the long axial view based on the anatomical axis of the tibia and the calcaneal axis, to point out possible differences attributed to that measurement method.

The study has many key findings related to traditional hindfoot predictive measurements. One major finding questions the commonly held belief that non-symptomatic feet have a slight valgus. When traditional hindfoot angle measurements were applied, the study showed that non-symptomatic feet have a neutral alignment. These results show a more neutral alignment of the hindfoot as opposed to the generally accepted constitutional valgus.

Another major finding was that the weight bearing CT clearly showed the talus. The talus is usually superimposed in plain x-rays and hard to see and can affect the mathematical calculations of the predicted hindfoot angle. So, unlike the Saltzman view, these calculations included the talus.

The ultimate goal of all orthopedic surgeons is to influence the correct alignment of bones. Even the slightest miscalculation in measurement can have lasting consequences on post-surgery recovery and future mobility. As the study notes, “Although surgical hindfoot corrections are frequently performed either extra-articular by osteotomies or intra-articular by arthrodesis, still numerous debate exists on the amount of correction and the ideal foot position after arthrodesis.” This finding could have repercussions on hindfoot position during fusion or in quantifying the correction of a malalignment. Due to the use of weight bearing CT, the inferior calcaneus point can be used during pre-operative planning of a hindfoot correction as an anatomical landmark due to its shown influence on load transfer.

A disadvantage of the study was that it was not truly spatial, as only the coronal plane was used in measurements. In the future, 3D segmentation models will allow for better spatial calculations. Until 3D weight bearing CT is an available option, it is recommended foot & ankle specialists exercise caution when planning from 2D radiographs. This study will contribute to the pre-operative planning by providing further insights into a physiological hindfoot alignment. For more detail, access the article here.

CBCT Technology is Increasingly Used by Orthopedists and Podiatrists

Cone beam computed topography (CBCT) systems are becoming popular with orthopedists and podiatrists because they quickly provide high-quality, low-dose, 3D imaging of musculoskeletal conditions. Dentists and podiatrists have been using CBCT technology for years, but the pedCAT by CurveBeam is designed specifically for extremities: especially knees, ankles, and feet. This compact, affordable unit gives specialists bilateral, weight-bearing 3D views of the foot and ankle, allowing physicians to create comprehensive treatment plans. In a Radiology Today article titled “Imaging in the Extremities,” Beth W. Orenstein, a freelance medical writer, examines this new technology.

There are a number of advantages to these new compact CBCT units. First, they have a larger area detector by which to image the patient in a single rotation, rather than taking many slices as with a tradition CT scanner. This feature eases system operation and reduces scan time. The pedCAT, for example, scans a patient in about one minute. Second, CBCT units can be located outside radiology departments, since they typically don’t require a lead-lined room or a special power source. Third, providers will find that CBCT positively impacts their practice, with improved diagnostic capabilities, streamlined workflow, and greater productivity. Finally, patients benefit with an easy-access unit that provides same-day results from a single brief visit.

CBCT provides other benefits to orthopedists and podiatrists, as well, such as the ability to produce load-bearing images. Load-bearing images of extremities, such as feet and ankles, may reveal alignment abnormalities that a conventional CT scan might miss. And CBCT offers improved spatial resolution over other methods, such as traditional CT scans or X-rays. One of the biggest benefits, though, is the transmission of a far smaller radiation dose. The tube current on a conventional CT scan typically ranges between 50 mA and 300 mA, and even an ultralow-dose setting would be between 20 mA and 60 mA. CurveBeam’s pedCAT, by contrast, has a fixed tube current of just 3mA, and the patient is exposed to 2 to 5 micro Sieverts per scan—less than the average background radiation a U.S. resident experiences daily.

Of course, there are also several challenges in adopting CPCT technology. For example, since CBCT uses a completely different image acquisition technology, comparing scans with conventional CT is difficult. The lack of dose and image quality assessment standards for CBCT limits accreditation. And since a unit like the pedCAT automatically generates all standard X-Ray views in addition to the full CT volume, many orthopedists and podiatrists feel they can interpret the images themselves in-house. In fact, some radiologists fear that point-of-care units could negatively impact their role as specialists. But other radiologists argue that the sophistication required in interpreting CT scan results will keep their expert services in demand.

In the future, CBCT units may even be used in emergency departments, as well, since the unit takes up so little space. The pedCAT’s footprint, for example, is about four feet by five feet. This means a CPCT scanner could be easily relocated where needed since it is relatively lightweight and mobile.

Read ““Imaging in the Extremities” by Beth W. Orenstein here: http://www.radiologytoday.net/archive/rt0317p16.shtml

New, Reliable Technology for Measuring Tibiofemoral Joint Space

Recent work by Dr. Neil H. Segal examined the potential of a low-dose standing CT scan for evaluating changes in tibiofemoral joint space of patients suffering from knee osteoarthritis.

The results of Dr. Segal’s study were recently published in the medical journal Skeletal Radiology and reveal that when taken two weeks apart, standing CT images are even more reliable than plain radiographs. The insightful, 3-D, information-packed images suggest that the modified foot/ankle scanner by CurveBeam used to capture the data may soon become a valuable tool for doctors to evaluate and track the disease’s progression, as well as for researchers wanting to study it.

Measurements of the tibiofemoral joint space were obtained from two bilateral fixed-flexed standing CT images taken two weeks apart, utilizing a modified version of a CurveBeam scanner more commonly used to capture images of the foot and ankle. Participants were exposed to an extremely low dose of effective radiation, O.2 mSv – no more than the average person is typically exposed to from the natural environment itself in any two-week period.

The main purpose of the study was to determine whether or not standing CT scans might be a viable alternative to plain radiographs for studying patients’ knee osteoarthritis – and how reliable such scans might be. Thirty people with a range of osteoarthritis features took part, and the Institutional Review Board approved all aspects of the study.

The results suggest the data obtained is extremely reliable. Moreover, the 3D imaging of both the tibiofemoral and patellofemoral joints the standing CT scanner produces offers a wealth of enhanced information for doctors and researchers to draw upon.

All this, the study shows, without a clinically significant increase in either acquisition time or radiation dose.

Dr. Segal’s work comes as a response, in part, to the difficulties and challenges in acquiring meaningful, reliable tibiofemoral joint space measurements using traditional radiographs.

Past studies have shown that the replication of measurements has been poor, with limited information obtained. More aggravating still is the fact that months if not years are usually required between radiographs before any change in the patient’s condition can be detected. An efficient, accurate, time-saving alternative has long been needed.

The modified CurveBeam scanner, by contrast, has the potential to address these challenges. As evidence from the study showed, the standing scanner provided exceptionally reliable images with insignificant doses of radiation emitted.

The next step will be to assess the responsiveness of the standing CT scanner to changes in the tibiofemoral joint over time. If effective, the protocol will no doubt become an invaluable tool for doctors and researchers alike in their work to combat the ravages of knee osteoarthritis and related ailments.

Access the link to the article here.

Comparison of Three Hindfoot Alignment Measurements: Radiographic Hindfoot Moment Arm, Radiographic Hindfoot Alignment Angle, and TALAS

Dr. Matthew Welck presented findings from a study overseen by Dr. Mark Myerson at the British Orthopedic Foot & Ankle Society (BOFAS) meeting in Bristol, England, in early November.

The study compared three hindfoot alignment measurements: radiographic hindfoot moment arm, radiographic hindfoot alignment angle, and TALAS. TALAS is a semi-automatic measurement based on anatomical landmarks on a weight bearing CT scan. TALAS was found to have the best intra-observer reliability.

5th-mt-contact-point
5th MT contact point.

As Dr. Welck explained, the TALAS technique measures offset of midline of whole foot, rather than just calcaneus. He presented an example of a patient with ‘neutral’ alignment to compare hindfoot alignment measurements. The first point was placed on the superior weight bearing portion of the talar dome. The calcaneus contact point was then placed on the lowest point of the calcaneus. The first metatarsal contact point was placed on the lowest point of the first metatarsal head. Similarly, the 5th metatarsal contact point was placed on the lowest point of the 5th metatarsal head. TALAS software provided a mapping of these contact points showing the axis, or the ’true’ hindfoot alignment.Next, Dr. Welck summarized the intra and inter observer reliability among the three measurements. As previously shown in the literature, Dr. Welck explained, there is good intraobserver reliability with the Saltzman hindfoot moment arm technique. Similarly, the hindfoot alignment angle has excellent intraobserver reliability. And there was excellent intra-observer reliability among investigators. Dr. Welck noted that while all three measurement techniques are reliable, the CT Ground Reactive Force Technique was nearly perfect.

CurveBeam’s pedCAT provides bilateral, weight bearing 3D CT imaging of the foot and ankle, greatly surpassing traditional imaging methods such as X-Ray and CT studies. CurveBeam’s technology also reduces the number of patient trips to the hospital, and exposes patients to less radiation. Because the 3D data generated by pedCAT is far more robust than could be interpreted by available software, CurveBeam engineers are collaborating with leading foot and ankle surgeons to develop a new measurement software – TALAS. TALAS, or Torque Ankle Lever Arm System, is a feature within pedCAT’s visualization application CubeVue.

talas-software
A mapping of the contact points in the TALAS software.

The British Orthopaedic Foot & Ankle Society (BOFAS) is a society of orthopaedic surgeons who have a special interest in surgery of the foot and ankle. The Society works to encourage interest in foot and ankle surgery among orthopaedic surgeons and to encourage both basic science and clinical research in the field.

Value of 3D Reconstructions of CT Scans for Calcaneal Fracture Assessment

Operative fracture treatment of irregularly shaped bones, such as the calcaneus, scapula and scaphoid, demands high-quality images of the area in question for both classification of the fracture and planning of the procedure. However, since plain radiographs do not provide enough pertinent information to this end, computerized tomography (CT) has become the standard for providing the necessary images for treatment of these irregularly shaped bones.

Yet, in a study observing 2D CT scans, only 42% of the evaluators were able to correctly classify the fracture, necessitating the need for some sort of change. Three dimensional CT renderings were proposed to fix the low inter-rater agreement generated by the 2D scans.

The foot in the video above was scanned on a pedCAT weight bearing CT imaging system for the foot and ankle. The calcaneus was segmented using CurveBeam’s CubeVue visualization software. 

To evaluate the effectiveness of 3D CT scans, A standard set of CT secondary reformation scans were presented, followed by a questionnaire describing fracture anatomy and preoperative planning. Subsequently, 3D reconstructions were presented to the evaluates followed by the same questionnaire. After presentation of the 3D images, 49% of the evaluators changed their plan in regard to the approach and 29% in regard to the implants.

Five different data sets (four intra-articular and one extra-articular fractures) were presented to 57 evaluators. All groups, except that of surgeons with more than 20 years of experience, benefited from 3D CTs (Friedman test; P < .01). Inexperienced surgeons benefited more than experienced surgeons and complex fractures more than simple fractures. Specifically, regions of interest such as the middle facet and fractures extending into the calcaneo-cuboid joint were evaluated more precisely.

In regard to 3D CT scans, Böhmer1 described the topographic relationship between the fragments and the surrounding structures as useful for evaluating calcaneal fractures and for preoperative planning because the fractures can be seen from unusual perspectives. Likewise, Choplin2,3 posited 3D scans assist diagnosing foot deformities since the scans improve comprehension of the anatomy, particularly for especially complex fractures. For such complex fractures and anatomy, Pate5 evaluated 202 patients with complex musculoskeletal problems and found 3D CT particularly helpful. Others came to similar conclusions.

When comparing techniques for diagnosing foot deformities, Allon and Mears4 compared plain radiography, 2D CT, and 3D CT of 30 fractured calcanei and concluded that 3D CT improves preoperative planning and the choice of an adequate approach.

Overall, 3D CT scans provide insight previously unavailable through both 2D and plain radiography, which inexperienced surgeons tend to find more helpful in diagnosing and preoperative planning.

 

References

  1. Bohmer G, Roesgen M, Hierholzer G. Three-dimensional computerized tomography in trauma surgery. A case presentation [in German]. Aktuelle Traumatol. 1992;22(2):47-56.
  2. Choplin RH, Buckwalter KA, Rydberg J, Farber JM. CT with 3D rendering of the tendons of the foot and ankle: technique, normal anatomy, and disease. Radiographics. 2004;24(2):343-356.
  3. Choplin RH, Farber JM, Buckwalter KA, Swan S. Threedimensional volume rendering of the tendons of the ankle and foot. Semin Musculoskelet Radiol. 2004;8(2):175-183
  4. Allon SM, Mears DC. Three dimensional analysis of calcaneal fractures. Foot Ankle. 1991;11(5):254-263
  5. Pate D, Resnick D, Andre M, Sartoris DJ, et al. Perspective: three-dimensional imaging of the musculoskeletal system. AJR Am J Röntgenol. 1986;147(3):545-551.

Weightbearing CT Imaging Methodology with pedCAT by CurveBeam

 
Three-dimensional weight-bearing computed tomography (CT) can be a powerful diagnostic tool, typically used when more information is necessary (e.g. intra-articular fractures, occult fractures and small bone tumors). Unlike conventional CT, which has a fan-shaped X-ray beam, modalities in the pedCAT created by CurveBeam have a cone-shaped X-ray beam. In a Podiatry Today’s article titled “Current Concepts With Weight bearing CT”, Dr. Albert V. Armstrong Jr., dean of the Barry University School of Podiatric Medicine, reviewed three independent studies that examined the efficacy of the technology.

In the first, Yoshioka and colleagues studied 10 patients with posterior tibial tendon dysfunction and 10 control patients, using weight-bearing and non-weight-bearing CT.1 The authors noted that the study clarified part of the clinical condition of the forefoot in flatfoot deformity, saying this may be applicable in basic research of the staging advancement and sub-stage classification of flatfoot.

In the second study, Krähenbühl and coworkers used weightbearing CT to determine the subtalar vertical angle in a study of 40 patients with osteoarthritis and 20 control patients.2 The study authors found that measuring the subtalar vertical angle was a reliable and consistent method to assess the varus/valgus configuration of the posterior facet of the subtalar joint.

In the final study, Geng and colleagues studied weightbearing and non-weightbearing CT scans of 10 patients with hallux valgus and 10 control patients, reconstructing 3D models for the first metatarsal and the medial cuneiform.3 Researchers noted the study furthers an understanding of the physiological and pathological mobility of the first metatarsocuneiform joint.

Weightbearing CT is a safe imaging modality with low radiation exposure that can provide superior images in comparison to conventional CT, as evidenced by the multiple studies. Weightbearing CT can enhance biomechanical evaluation, preoperative planning, postoperative evaluation, wound management, sports medicine, treatment of arthritic conditions (especially degenerative joint disease) and trauma (especially when looking for occult or hairline fractures). It is a promising and up and coming imaging method to replace traditional CT technology.

Cone beam CT allows clinicians to obtain an image of a volume of tissue in one circumferential pass instead of having to take multiple slices with multiple exposures. This leads directly to reduced radiation exposure for patients. Studies indicate, in the example of a bilateral scan of a foot, the pedCAT machine exposes patients to one third the amount of radiation as traditional methods. Another great feature of weight-bearing CT is the ability to perform bilateral scans. One can also view the same patient with the view of the the soft tissue structures removed, leading to increasingly accurate prognosis. In addition, the pedCAT is an excellent tool to illustrate visually to a patient exactly where a bunion, for example, is located underneath the soft tissue. The generated visual displays are much easier to understand for non-trained individuals.

Performing actual weightbearing examinations is possible through pedCAT, a main advantage of the machine. In a specific instance, a podiatrist can view a foot supporting weight, viewing the 3D image and the accompanying 2D images in the sagittal, axial (transverse) and coronal (frontal) planes. This would allow the physician to observe the appendage in its most natural state, allowing a more precise diagnosis of problems.

Read “Current Concepts With Weightbearing CT” by Dr. Albert V. Armstrong Jr. here: http://www.podiatrytoday.com/current-concepts-weightbearing-ct