ISO 13485 Certified | ISO9001 Certified Request more information or an in-office demo (267) 483-8081

Tag Archives: CBCT

Study Finds Weight Bearing CT Scans Could Provide Accurate Measurements of Adult Acquired Flatfoot Deformity

Gaining an accurate and complete measurement of the hindfoot alignment of a patient with adult acquired flatfoot deformity (AAFD) is difficult when using traditional clinical assessment. In a paper published in the journal Foot and Ankle Surgery, Dr. Cesar de Cesar Netto, MD, PhD, and his colleagues posit that weight-bearing cone beam computed tomography (CBCT) scanning technology may give a more complete, three-dimensional view of the deformity and its underlying causes.

Dr. Cesar de Cesar Netto, MD, PhD
Dr. Cesar de Cesar Netto, MD, PhD

In the article, “Hindfoot Alignment of Adult Acquired Flatfoot Deformity,” the team studied twenty patients with AAFD, twelve men and eight women. All participants had to undergo a clinical assessment of their hindfoot alignment and got a weight-bearing CBCT scan. After all tests were completed, the team found that the weight-bearing CBCT scans provided far more accurate, reliable and repeatable measurements than those of the clinical assessments, thus making a strong case for the use of cone beam technology in AAFD diagnosis and treatment.

In the video below, Dr. de Cesar Netto describes how WBCT assists in AAFD evaluation. “We have been finding really interesting things while studying the flat foot deformities in the weight bearing CT images, most of them related to coronal plane assessment. But it’s not just that,” Dr. Cesar de Netto says.  “We are trying to use the three dimensional environment to find out how the deformity progresses.”

The problem with current practices, according to de Cesar Netto and his colleagues, is that they rely on two systems that make it difficult to obtain universally accepted results. The first is radiographic examinations. These are two-dimensional and cumbersome, with further difficulty added when trying to discern hindfoot alignment due to the complexity of the subtalar joint. Not only that, but these examinations are especially prone to improper positioning which would throw off the results. The other traditional system used for hindfoot alignment measurement is made up of a series of clinical measurements including simple visual evaluation. These measurements have consistently been shown to be inaccurate and highly variable from physician to physician.

Recent advancements in CBCT technology now allow physicians to obtain a three-dimensional, highly detailed view of a patient’s lower extremities. They also allow for a complete picture of both the soft-tissue and bone within the foot, so that no issues go overlooked. Of particular interest to the study at hand was the fact that CBCT allows for scans to be taken of the foot in a natural, weight-bearing state. As AFFD is highly dynamic, analysis of the condition with the effects of a patient’s full body weight can be immensely beneficial when developing a treatment plan.

Leading the way with weight-bearing cone beam technology is CurveBeam. The CurveBeam LineUP is revolutionizing how physicians approach diagnosis and treatment plan development as their technology provides complete views of the lower extremities with high image quality.

CurveBeam Is the Innovator in 3D Orthopedic Imaging Technology

Cone beam computed topography, or CBCT, has become the standard of care in orthopedic imaging. This technology has revolutionized the practices of doctors in the orthopedic and podiatric industry. Automatic measurement tools lead to better patient outcomes with the added convenience of point-of-care advanced diagnostics. CurveBeam’s goal is to lead the way with cutting-edge innovations in orthopedic imaging. CurveBeam not only adopts new technology quickly, but is increasingly setting the standard.

CurveBeam imaging products are designed specifically to analyze extremities, especially knees, ankles, and feet. These compact, affordable units give specialists high-quality, weight-bearing 3D views of a patient’s foot and ankle. Scans are low-dose, so units don’t require shielding or dedicated facilities. Units are lightweight, mobile, and require no special power sources, so they can easily become an essential tool in virtually any practice.

In the past, doctors had to interpret images manually. CurveBeam’s software uses artificial intelligence to predict a patient’s future prognosis and recommend a comprehensive treatment plan. Providers will find this advanced capability directly impacts their practice, resulting in improved diagnostics, streamlined workflow, and greater productivity.

CurveBeam is an innovator setting the standard of care in orthopedic imaging. Check out our video below to learn more about this exciting technology!

CBCT Technology is Increasingly Used by Orthopedists and Podiatrists

Cone beam computed topography (CBCT) systems are becoming popular with orthopedists and podiatrists because they quickly provide high-quality, low-dose, 3D imaging of musculoskeletal conditions. Dentists and podiatrists have been using CBCT technology for years, but the pedCAT by CurveBeam is designed specifically for extremities: especially knees, ankles, and feet. This compact, affordable unit gives specialists bilateral, weight-bearing 3D views of the foot and ankle, allowing physicians to create comprehensive treatment plans. In a Radiology Today article titled “Imaging in the Extremities,” Beth W. Orenstein, a freelance medical writer, examines this new technology.

There are a number of advantages to these new compact CBCT units. First, they have a larger area detector by which to image the patient in a single rotation, rather than taking many slices as with a tradition CT scanner. This feature eases system operation and reduces scan time. The pedCAT, for example, scans a patient in about one minute. Second, CBCT units can be located outside radiology departments, since they typically don’t require a lead-lined room or a special power source. Third, providers will find that CBCT positively impacts their practice, with improved diagnostic capabilities, streamlined workflow, and greater productivity. Finally, patients benefit with an easy-access unit that provides same-day results from a single brief visit.

CBCT provides other benefits to orthopedists and podiatrists, as well, such as the ability to produce load-bearing images. Load-bearing images of extremities, such as feet and ankles, may reveal alignment abnormalities that a conventional CT scan might miss. And CBCT offers improved spatial resolution over other methods, such as traditional CT scans or X-rays. One of the biggest benefits, though, is the transmission of a far smaller radiation dose. The tube current on a conventional CT scan typically ranges between 50 mA and 300 mA, and even an ultralow-dose setting would be between 20 mA and 60 mA. CurveBeam’s pedCAT, by contrast, has a fixed tube current of just 3mA, and the patient is exposed to 2 to 5 micro Sieverts per scan—less than the average background radiation a U.S. resident experiences daily.

Of course, there are also several challenges in adopting CPCT technology. For example, since CBCT uses a completely different image acquisition technology, comparing scans with conventional CT is difficult. The lack of dose and image quality assessment standards for CBCT limits accreditation. And since a unit like the pedCAT automatically generates all standard X-Ray views in addition to the full CT volume, many orthopedists and podiatrists feel they can interpret the images themselves in-house. In fact, some radiologists fear that point-of-care units could negatively impact their role as specialists. But other radiologists argue that the sophistication required in interpreting CT scan results will keep their expert services in demand.

In the future, CBCT units may even be used in emergency departments, as well, since the unit takes up so little space. The pedCAT’s footprint, for example, is about four feet by five feet. This means a CPCT scanner could be easily relocated where needed since it is relatively lightweight and mobile.

Read ““Imaging in the Extremities” by Beth W. Orenstein here: http://www.radiologytoday.net/archive/rt0317p16.shtml